Skip Ribbon Commands
Skip to main content
Translate
Donations
menu iconMenu
search iconSearch

Researchers Identify New Drug Targets for Cancer

 

December 29, 2006  |  

Solving a 100-year-old genetic puzzle, researchers at the University of California, San Diego (UCSD) School of Medicine and the Ludwig Institute for Cancer Research have determined that the same genetic mechanism that drives tumor growth can also act as a tumor suppressor.  Their findings could lead to new drug targets for cancer therapies.

In a study published in the January 1 issue of Cancer Cell, Don Cleveland, Ph.D., UCSD Professor of Medicine, Neurosciences and Cellular and Molecular Medicine and member of the Ludwig Institute for Cancer Research, looked at a common characteristic of cancer cells called aneuploidy.  Aneuploidy – the occurrence of one or more extra or missing chromosomes – was first proposed as the cause of cancerous tumors nearly a century ago by German biologist Theodor Boveri, but his hypothesis had remained unproven.

“We questioned whether the wrong number of chromosomes contributed to tumor growth, or was a consequences of the accrued damage in cancerous cells,” said Cleveland.

To find out, researchers in the Cleveland lab created and analyzed mouse models with cells having a highly variable number of chromosomes to discover if such aneuploidy made the mice more tumor-prone.

“We found that, with age, having cells which inherited the wrong composition of chromosomes resulted in a larger number of spontaneous tumors,” said Cleveland.  But the more unexpected feature of their findings was discovered when the research team added other genetic errors to mice with a high rate of aneuploidy – tumor development was slowed.

The UCSD researchers also studied mice that were missing a tumor suppressor gene, which is a gene that acts to prevent cell growth.  If a mutation occurs in this gene, it makes the individual – or in this case, the mouse – more susceptible to the development of cancer in the tissue in which the mutation occurs.   

“When we created mice missing a tumor suppressor gene that also had a high rate of aneuploidy, tumor development was actually sharply delayed,” said Cleveland, adding that in tumors, “there is always a balance between uncontrolled growth and death.”

The researchers hope that, in the future, they can develop what they are calling “aneuploidy therapy.”  Drugs that inhibit accurate delivery of the right number of chromosomes to each new cell, resulting in aneuploidy, would be used to destroy tumors caused by mutations in the tumor suppressors.

“This study opens up a whole series of potential therapeutic targets for cancer,” said Beth A.A. Weaver, of the Ludwig Institute for Cancer Research and UCSD Department of Cellular and Molecular Medicine, the study’s first author.  “By increasing the level of genetic damage, we can kill those tumor cells.”

Other contributors include Alain D. Silk, Ludwig Institute for Cancer Research and UCSD Department of Cellular and Molecular Medicine;  Cristina Montagna, UCSD Departments of Pathology and Molecular Genetics; Pascal Verdier-Pinard, Departments of Molecular Pharmacology and OB/GYN and Women’s Health, Albert Einstein College of Medicine, Bronx, NY.

This work was supported by a National Institutes of Health grant and supported, in part, by a postdoctoral fellowship from Philip Morris USA Inc. and Philip Morris International.

Media Contact: Debra Kain, 619-543-6163, ddkain@ucsd.edu

 

 

 


Related Specialties

UCSD Moores Cancer Center


Media Contact

Related News

5/21/2015
Using human embryonic stem cells, researchers at University of California, San Diego School of Medicine and Moores Cancer Center and Sanford-Burnham Medical Research Institute created a model that all ...
5/18/2015
A binational team from the University of California, San Diego School of Medicine and the U.S.-Mexico Border Health Commission, Mexico Section has launched a new research project aimed at promoting pr ...
5/17/2015
For parents who send their kids to dance classes to get some exercise, a new study from researchers at University of California, San Diego School of Medicine suggests most youth dance classes provide ...
5/8/2015
Therapies that specifically target mutations in a person’s cancer have been much-heralded in recent years, yet cancer cells often find a way around them. To address this, researchers at University of ...
5/7/2015
Researchers at University of California, San Diego School of Medicine and Shiley Eye Institute have identified the molecular “glue” that builds the brain connections that keep visual images clear and ...
5/7/2015
Writing in the May 7 online issue of American Journal of Geriatric Psychiatry, researchers at University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System su ...
5/6/2015
Each year, more than 10 million Americans seek medical attention, often in emergency situations, for symptoms of intestinal blockages. Researchers at the University California, San Diego School of Med ...
5/6/2015
With the threat of multidrug-resistant bacterial pathogens growing, new ideas to treat infections are sorely needed. Researchers at University of California, San Diego School of Medicine and Skaggs Sc ...


Share This Article



Follow Us