Skip Ribbon Commands
Skip to main content
Translate
Donations
menu iconMenu
search iconSearch

UCSD Cancer Researchers Report Ability to Detect Cancer at Earliest, Curable stage

 

April 19, 2007  |  

Researchers at the Moores Cancer Center at the University of California, San Diego report that they have developed a new method for detecting cancer very early in its development, when it consists of just a few cells. The best existing detection methods are not able to detect a tumor until it consists of about one million cells.

The paper*, published in the April 18 issue of the online journal PLoS ONE, describes a series of proof-of-concept experiments in which the researchers, working with two cancer cell lines, were able to select out and amplify tiny amounts of cancer-causing DNA in the presence of more than 99.9 percent of normal DNA.  Current methods for identifying deleted DNA would not work in clinical settings because they require isolation of relatively pure cancer cells. This is not feasible for clinical samples, which typically contain large amounts of the person’s normal cells.

“We have developed a new technology for very early detection of virtually any type of solid-tumor cancer based upon damaged DNA, which is where all cancers begin,” said co-author Dennis A. Carson, M.D., professor of medicine and director of the Moores Cancer Center. “We are now working with engineers toward the fabrication of the clinical devices that will enable this to be widely used in patients.”

Carson said they are several years away from clinical testing, but ultimately individuals will be able to be screened for DNA markers of cancer cells using simple clinical samples such as blood or urine. Using this same technology, physicians will be able to easily and inexpensively monitor the status of patients by looking for the DNA markers. If the treatment worked, there would be no mutated DNA and the patient would be cured. Such monitoring would also shorten the time needed to determine if the treatment is not working so another approach could be instituted.

The technology, called Primer Approximation Multiplex PCR (PAMP), is based upon an enzyme reaction that only works when a piece of DNA has been deleted or is abnormally joined to another piece of DNA, according to co-author Yu-Tsueng Liu, M.D., Ph.D., assistant project scientist and director of the biomarker laboratory at the Moores Cancer Center. The exact location of the mutation does not matter. The method will detect any mutated DNA in the presence of normal DNA, and amplify only the mutant molecules.

Liu explains: “When a cancer cell mutates, it often brings together two pieces of DNA that are normally apart. We have developed an enzyme reaction that works well only when two DNA pieces that are normally separated are close together. This technology amplifies the mutant DNA and then uses a microarray to identify the specific mutation. Our experiments were conducted on a specific gene mutation that is well-known for its role in cancer, called CDKN2A, but this technology would work on any DNA abnormality.”

This work is supported in part by grants for the UCSD NanoTumor Center of Excellence for Cancer Nanotechnology and the National Institutes of Health. The authors have submitted a provisional patent application based on this study.

Founded in 1979, the Moores Cancer Center at the University of California, San Diego is one of just 39 centers in the United States to hold a National Cancer Institute (NCI) designation as a Comprehensive Cancer Center.  As such, it ranks among the top centers in the nation conducting basic, translational and clinical cancer research, providing advanced patient care and serving the community through innovative outreach and education programs. 

*A Novel Approach for Determining Cancer Genomic Breakpoints in the Presence of Normal DNA,” Yu-Tsueng Liu, Dennis A. Carson

# # #

Media Contact:  Nancy Stringer, 619-543-6163, nstringer@ucsd.edu

 




Media Contact

Related News

5/26/2015
The Huntington's Disease Clinical Research Center (HDCRC) at UC San Diego Health System has been designated a Center of Excellence by the Huntington’s Disease Society of America (HDSA). UC San Diego w ...
5/25/2015
Researchers at University of California, San Diego School of Medicine and Moores Cancer Center have now identified six mRNA isoforms (bits of genetic material) produced by ovarian cancer cells but not ...
5/21/2015
Using human embryonic stem cells, researchers at University of California, San Diego School of Medicine and Moores Cancer Center and Sanford-Burnham Medical Research Institute created a model that all ...
5/18/2015
A binational team from the University of California, San Diego School of Medicine and the U.S.-Mexico Border Health Commission, Mexico Section has launched a new research project aimed at promoting pr ...
5/17/2015
For parents who send their kids to dance classes to get some exercise, a new study from researchers at University of California, San Diego School of Medicine suggests most youth dance classes provide ...
5/8/2015
Therapies that specifically target mutations in a person’s cancer have been much-heralded in recent years, yet cancer cells often find a way around them. To address this, researchers at University of ...
5/7/2015
Researchers at University of California, San Diego School of Medicine and Shiley Eye Institute have identified the molecular “glue” that builds the brain connections that keep visual images clear and ...
5/7/2015
Writing in the May 7 online issue of American Journal of Geriatric Psychiatry, researchers at University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System su ...


Share This Article



Follow Us