Skip Ribbon Commands
Skip to main content
Translate
Donations
menu iconMenu
search iconSearch

UCSD Researchers Discover Variants of Natural Tumor Suppressor

 

April 09, 2007  |  

Finding could lead to therapy targets for diabetes, heart disease and cancer

Building on their 2005 discovery of an enzyme that is a natural tumor suppressor, researchers at the University of California, San Diego (UCSD) School of Medicine have now identified two variants of that enzyme which could provide new targets for therapies to treat diabetes, heart and neurological disease.  The findings, by Alexandra C. Newton, Ph.D., UCSD professor of pharmacology, and colleagues are published in the current edition of the journal Molecular Cell.

Previous research by Newton’s lab, also published in Molecular Cell, described the discovery of an enzyme they named PH domain Leucine-rich repeat Protein Phosphatase (PHLPP, pronounced “flip”) that turns off signaling of the Akt/protein kinase B, a protein which controls cell growth, proliferation and survival.

The new work describes a second family member, PHLPP2, which also inactivates Akt, inhibiting the cell cycle progression and promoting cell death.  However, PHLPP1 and PHLPP2 control three different disease pathways.  While both are important in cancer, PHLPP 1 impacts an important pathway in diabetes and PHLPP2 could be useful in fighting heart and neurological disease.

“We first discovered that PHLPP controls Akt, which is the driver on the pathway to tumor growth,” said Newton.  “PHLPP is like a brake that, when on, slows the driver but when ‘off’ allows the driver to move.  In cancer, we want the driver to brake, to prevent cell proliferation leading to tumor growth.  But in diabetes, heart or neurological disease, where we want to promote cell growth and survival, we don’t want to slow the driver down.”

The researchers have now found that PHLPP1 controls the driver along one pathway – Akt2, which is more closely involved in maintaining a constant level of glucose in the bloodstream.  Therapies directed at inhibiting PHLPP1 could be used to treat diabetes; in essence, removing the ‘brake’ and allowing Akt2 to be more functional and allow better insulin regulation.  PHLPP2, on the other hand, controls the driver on Akt1, the path involved with cell survival.  Therapies directed at releasing the brake on this driver would allow cells involved in heart or neurological diseases to better survive. 

“Both PHLPP variants are important in cancer; the loss of  a brake to any of the three Akt pathways sends ‘go, go, go’ signals that promote the survival of tumor cells,” said first author John Brognard.   UCSD researchers had previously discovered that Akt is hyperactivated, or elevated, in most cancers and PHLPP provides a mechanism to reverse this activation. 

Additional contributors to this paper include Brognard, Tianyan Gao and Emma Sierecki, UCSD Department of Pharmacology.  Funding for the research was provided in part by the National Institutes of Health and a grant from the U.S. Army Medical Research Acquisition Activity.

                                                 # # #

Media Contact:
Debra Kain, 619-543-6163, ddkain@ucsd.edu




Media Contact

Related News

5/26/2015
The Huntington's Disease Clinical Research Center (HDCRC) at UC San Diego Health System has been designated a Center of Excellence by the Huntington’s Disease Society of America (HDSA). UC San Diego w ...
5/25/2015
Researchers at University of California, San Diego School of Medicine and Moores Cancer Center have now identified six mRNA isoforms (bits of genetic material) produced by ovarian cancer cells but not ...
5/21/2015
Using human embryonic stem cells, researchers at University of California, San Diego School of Medicine and Moores Cancer Center and Sanford-Burnham Medical Research Institute created a model that all ...
5/18/2015
A binational team from the University of California, San Diego School of Medicine and the U.S.-Mexico Border Health Commission, Mexico Section has launched a new research project aimed at promoting pr ...
5/17/2015
For parents who send their kids to dance classes to get some exercise, a new study from researchers at University of California, San Diego School of Medicine suggests most youth dance classes provide ...
5/8/2015
Therapies that specifically target mutations in a person’s cancer have been much-heralded in recent years, yet cancer cells often find a way around them. To address this, researchers at University of ...
5/7/2015
Researchers at University of California, San Diego School of Medicine and Shiley Eye Institute have identified the molecular “glue” that builds the brain connections that keep visual images clear and ...
5/7/2015
Writing in the May 7 online issue of American Journal of Geriatric Psychiatry, researchers at University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System su ...


Share This Article



Follow Us