Skip Ribbon Commands
Skip to main content
Translate
Donations
menu iconMenu
search iconSearch

Study May Aid Efforts to Prevent Uncontrolled Cell Division in Cancer

 

May 28, 2009  |  

Researchers from the Ludwig Institute for Cancer Research at the University of California, San Diego School of Medicine have uncovered a remarkable property of the contractile ring, a structure required for cell division.  Understanding how the contractile ring works to divide the cell may facilitate development of therapies to prevent uncontrolled cell division in cancer.

The researchers show that – even though both cell volume and the length of the contractile ring are reduced during successive rounds of embryonic cell division – the duration or timing of cell division remains the same. Their study will be published in the May 29 issue of the journal Cell.

“We showed that contractile rings constrict at a constant rate that is proportional to the initial size of the cell, so that rings in larger cells constrict proportionally faster than rings in smaller cells,” said Karen Oegema, PhD, associate professor at the Ludwig Institute and the Department of Cellular and Molecular Medicine at UC San Diego School of Medicine and the Moores UCSD Cancer Center.  “Because of this property, the time required to complete cell division remains the same during embryogenesis, even as cells get smaller.”

During their early development, embryos are progressively partitioned into smaller and smaller cells by successive rounds of cell division. The division of one cell into two is accomplished by the contractile ring, which is assembled from two protein filament types also used in muscle.   During cell division, the genome is replicated and the two copies are separated to opposite sides of the cell.  A contractile ring forms a belt around the cell middle; constriction or closure of this ring “tightens the belt,” pinching the mother cell into two daughter cells.

In early embryogenesis, cell volume and the length of the contractile ring around the cell middle are reduced at each successive round of cell division.  By contrast, the dimension of the chromosomes – which carry the genetic material that is segregated to the daughter cells – remains constant. The discovery that contractile rings constrict at a constant rate, proportionate to the initial cell size, opens the door to further studies of the mechanism.

“Further studies of the contractile ring could ultimately lead to improved therapies for cancer,” said first author Ana Carvalho, PhD. “Understanding the cellular machinery required for cell division may teach us how to prevent the uncontrolled cell division that occurs in cancer.”

Arshad Desai, PhD, professor at the Ludwig Institute and assistant professor of cellular and molecular medicine at UCSD also contributed to the paper. Funding was provided by the Ludwig Institute for Cancer Research, the Pew Scholars Program in the Biomedical Sciences, the Fundação para a Ciência e Tecnologia, Portugal, and The European Social Fund.

# # #

Media Contacts:
Steve Benowitz, 619-543-6163, sbenowitz@ucsd.edu
Debra Kain, 619-543-6163, ddkain@ucsd.edu

 


Related Specialties

UCSD Moores Cancer Center


Media Contact

Related News

5/21/2015
Using human embryonic stem cells, researchers at University of California, San Diego School of Medicine and Moores Cancer Center and Sanford-Burnham Medical Research Institute created a model that all ...
5/18/2015
A binational team from the University of California, San Diego School of Medicine and the U.S.-Mexico Border Health Commission, Mexico Section has launched a new research project aimed at promoting pr ...
5/17/2015
For parents who send their kids to dance classes to get some exercise, a new study from researchers at University of California, San Diego School of Medicine suggests most youth dance classes provide ...
5/8/2015
Therapies that specifically target mutations in a person’s cancer have been much-heralded in recent years, yet cancer cells often find a way around them. To address this, researchers at University of ...
5/7/2015
Researchers at University of California, San Diego School of Medicine and Shiley Eye Institute have identified the molecular “glue” that builds the brain connections that keep visual images clear and ...
5/7/2015
Writing in the May 7 online issue of American Journal of Geriatric Psychiatry, researchers at University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System su ...
5/6/2015
Each year, more than 10 million Americans seek medical attention, often in emergency situations, for symptoms of intestinal blockages. Researchers at the University California, San Diego School of Med ...
5/6/2015
With the threat of multidrug-resistant bacterial pathogens growing, new ideas to treat infections are sorely needed. Researchers at University of California, San Diego School of Medicine and Skaggs Sc ...


Share This Article



Follow Us