Skip Ribbon Commands
Skip to main content
Translate
Donations
menu iconMenu
search iconSearch

Researchers Identify microRNA Targets in C. elegans

Regulating protein levels is key to biomedical research in humans and model organisms

January 11, 2010  |  

MicroRNAs (miRNAs) are non-coding RNAs that impact almost every aspect of biology.  In recent years, they have been strongly implicated in stem cell biology, tissue and organism development, as well as human conditions ranging from mental disorders to cancer. For the most part, miRNAs control gene expression of messenger RNA (mRNA) targets.  Unlike mRNAs, which are translated into proteins, miRNAs function as short, untranslated molecules that regulate specific mRNAs through base-pairing interactions. Since miRNAs bind limited stretches of consecutive bases in mRNAs, identifying which mRNAs are targets of individual miRNAs has been a bottleneck of biomedical research, as researchers have had to rely largely on computational predictions.

Now, researchers at the University of California, San Diego have identified the binding sites of these miRNAs in one of the foremost model organisms, C. elegans, using biochemical means to capture targeted mRNA sequences in vivo.

Argonaute proteins are key players in gene-silencing pathways; miRNAs are anchored into specific binding sites to guide Argonaute proteins to target mRNA molecules for silencing or destruction. By cross-linking interactions between the Argonaute protein bound to miRNA and mRNA duplexes, principal investigators Gene Yeo, PhD, assistant professor in UCSD’s Department of Cellular and Molecular Medicine and Amy Pasquinelli, PhD, associate professor in UCSD's Division of Biological Sciences, were able to globally identify their specific binding sites in the nematode.

“Our results were very surprising in that we discovered that individual miRNAs can interact with their targets very differently, and differently than we had expected,” said Yeo.  “This approach, and the computational analyses that were develop, open up new ways to identify individual miRNA targets in any tissue and cell type in almost any organism."

"The revelation of thousands of endogenous miRNA target sites provides an unprecedented wealth of data for understanding how miRNAs regulate specific targets in a developing animal," added Pasquinelli. 

Their work was published online in advance of print on January 10 by Nature Structural & Molecular Biology.

# # #

Media Contact: Debra Kain, 619-543-6163, ddkain@ucsd.edu




Media Contact

Related News

5/26/2015
The Huntington's Disease Clinical Research Center (HDCRC) at UC San Diego Health System has been designated a Center of Excellence by the Huntington’s Disease Society of America (HDSA). UC San Diego w ...
5/25/2015
Researchers at University of California, San Diego School of Medicine and Moores Cancer Center have now identified six mRNA isoforms (bits of genetic material) produced by ovarian cancer cells but not ...
5/21/2015
Using human embryonic stem cells, researchers at University of California, San Diego School of Medicine and Moores Cancer Center and Sanford-Burnham Medical Research Institute created a model that all ...
5/18/2015
A binational team from the University of California, San Diego School of Medicine and the U.S.-Mexico Border Health Commission, Mexico Section has launched a new research project aimed at promoting pr ...
5/17/2015
For parents who send their kids to dance classes to get some exercise, a new study from researchers at University of California, San Diego School of Medicine suggests most youth dance classes provide ...
5/8/2015
Therapies that specifically target mutations in a person’s cancer have been much-heralded in recent years, yet cancer cells often find a way around them. To address this, researchers at University of ...
5/7/2015
Researchers at University of California, San Diego School of Medicine and Shiley Eye Institute have identified the molecular “glue” that builds the brain connections that keep visual images clear and ...
5/7/2015
Writing in the May 7 online issue of American Journal of Geriatric Psychiatry, researchers at University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System su ...


Share This Article



Follow Us