Skip Ribbon Commands
Skip to main content
Translate
Translate
menu iconMenu
search iconSearch

Defective Signaling Pathway Sheds Light on Cystic Fibrosis

 

February 16, 2010  |   

In a study that could lead to new therapeutic targets for patients with the cystic fibrosis, a research team from the University of California, San Diego School of Medicine has identified a defective signaling pathway that contributes to disease severity. In the study, published in the journal Nature Medicine, the researchers report that defective signaling for a protein called the peroxisome proliferator-activated receptor-γ(PPAR-γ) accounts for a portion of disease symptoms in cystic fibrosis, and that correction of the defective pathway reduces symptoms of the disease in mice.

In the paper published in the February 14 edition of the journal, lead investigator Gregory Harmon, MD, study supervisor Christopher Glass, MD, PhD, professor of cellular and molecular medicine, and colleagues show that both mice and cells from patients with cystic fibrosis have a defect in signaling for PPAR-γ, as a result of reduced levels of prostaglandins that activate the receptor.

Cystic fibrosis is the most common, potentially lethal genetic disease among whites, occurring in one in 3,000 births. The disease is a multisystem condition that leads to progressive lung failure, pancreatic failure and gastrointestinal obstruction, or blockage.

“Cystic fibrosis results from a genetic mutation in a channel, or membrane pore, that facilitates the transport of chloride and bicarbonate electrolytes from inside the cell to the spaces outside the cell,” said Harmon.  “Loss of the cystic fibrosis pore channel results in inflammation and mucus accumulation.  It also results in dehydration of the cell surfaces that make up the lining spaces inside the lungs and other affected organs, such as the intestinal tract.”

Exactly how the process occurs has been a matter of intense scientific scrutiny; yet despite numerous therapeutic advances, individuals with the disease continue to endure a shortened lifespan.  “Someone born in the 1990s with cystic fibrosis is expected to live to an age of around 40,” Harmon added.

Working with isolated cells from mice and human cell lines from patients with the disease, Harmon identified that multiple genes affected by PPAR-γ were reduced in cystic fibrosis. When the researchers treated mice with cystic fibrosis with the drug rosiglitazone, a thiazolidinedione drug that binds and activates PPAR-γ, gene expression was largely normalized and survival improved. The drugs also corrected part of the inflammatory process in the tissue. Deleting the PPAR-γ protein in the intestine of mice worsened the disease, leading to mucus accumulation in the intestine. Additionally, the researchers found that activating PPAR-γ could increase bicarbonate production in the intestinal tissue by increasing the activity of bicarbonate-producing enzymes called carbonic anhydrases.

“For the first time, we are able to use a drug that activates bicarbonate transport without affecting chloride transport, and see improvement in the disease,” Harmon said. The results provide support for the hypothesis of experts in the field such as UCSD’s Paul Quinton, PhD, who has written that increasing bicarbonate in cystic fibrosis tissues could be a relevant target for future therapies.

“The finding of the reduced PPAR-γ activating prostaglandin in cystic fibrosis is exciting since it could serve as a marker to identify which patients might benefit from treatment with PPAR- activating drugs,” said Glass.

Additional contributors include Darren S. Dumlao and Edward A. Dennis of the Department of Chemistry and Biochemistry and Department of Pharmacology; Damian T. Ng, Department of Cellular and Molecular Medicine; and Kim E. Barrett and Hui Dong, Department of Medicine; all at the University of California, San Diego.

These studies were supported by grants from the National Institutes of Health and a Fellowship to Faculty Transition Award from the Foundation for Digestive Health and Nutrition to Harmon.

# # #

Media Contact: Debra Kain, 619-543-6163, ddkain@ucsd.edu

Related Specialties

Adult Cystic Fibrosis



Media Contact

Related News

4/22/2015
UC San Diego Health System and Scripps Health are partnering to provide improved continuity of patient care, fellowship training and research in hospice and palliative medicine. Under a new five-year ...
4/20/2015
Researchers at the University of California, San Diego School of Medicine and Moores Cancer Center have discovered a molecular mechanism that connects breast tissue stiffness to tumor metastasis and p ...
4/20/2015
A decrease in the amount of time spent eating and an increase in overnight fasting reduces glucose levels and may reduce the risk of breast cancer among women, report University of California, San Die ...
4/20/2015
The threat of falsified medications, also referred to as counterfeit, fraudulent, and substandard, can be quite real, yet the full scope and prevalence of the problem is poorly understood, say researc ...
4/17/2015
Researchers at the University of California, San Diego School of Medicine have created an in vitro, live-cell artificial vessel that can be used to study both the application and effects of devices us ...
4/16/2015
The increase in use of e-cigarettes has led to heated debates between opponents who question the safety of these devices and proponents who claim the battery-operated products are a useful cessation t ...
4/16/2015
An international team of scientists, led by researchers at University of California, San Diego School of Medicine, have found genetic overlap between Alzheimer’s disease (AD) and two significant cardi ...
4/13/2015
About one quarter of all atrial fibrillation patients at the lowest risk for stroke receive unnecessary blood thinners from cardiology specialists, according to a new study by researchers at Universit ...