Skip Ribbon Commands
Skip to main content
Translate
Translate
menu iconMenu
search iconSearch

Neurological Disorder Impacts Brain Cells Differently

 

November 09, 2011  |   

In a paper published in the November 9 issue of The Journal of Neuroscience, researchers at the University of California, San Diego School of Medicine and University of Washington describe in deeper detail the pathology of a devastating neurological disorder, but also reveal new cellular targets for possibly slowing its development.

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurological disorder in which cells in the cerebellum and brainstem degenerate, resulting in progressive loss of physical coordination and possible blindness. Its pathology is similar to other neurodegenerative diseases like Parkinson’s, Huntington’s and amyotrophic lateral sclerosis. And like them, it’s currently incurable.

 Al La Spada

 Al La Spada, MD, PhD

The scientists, led by Al La Spada, MD, PhD, chief of the division of genetics in the UC San Diego department of pediatrics, and professor of cellular and molecular medicine, neurosciences and biological sciences, used a variety of transgenic mouse models to show that SCA7 results from genetic dysfunction not just in affected neurons, but also in associated non-neuronal support cells.

“The central nervous system is quite complicated, with neurons interacting with each other and with other cell types. So it shouldn’t be a surprise that the disease process is similarly complex,” said La Spada, who is also associate director of the UC San Diego Institute for Genomic Medicine. “We show that dysfunction in a variety of cell types contributes to SCA7, and that if you can improve function in any of these cell types, you have a reasonable chance of improving treatment of the disease.”

La Spada and colleagues created a transgenic mouse in which the key gene mutation that causes SCA7 could be easily manipulated. The mouse was then bred with other mouse models that eliminated the mutant gene protein from specific cell types affected by SCA7: Purkinje neurons (large cells in the cerebral cortex responsible for motor coordination), Bergmann glia (support cells found in the cerebellum) and cells in the olivary complex (part of the brainstem controlling body movement).

By creating and comparing mice that expressed the mutant gene only in targeted cells, La Spada said the scientists made two unexpected discoveries: First, when the gene mutation was eliminated from Bergmann glia, neurodegeneration continued unabated and still involved dysfunction and degeneration of the Bergmann glia themselves. Second, when the mutation was excised from Purkinje neurons and the olivary complex, there was significantly less neurological damage and Bergmann glia remained intact.

“The first result highlights the relatively new idea that degeneration goes both ways,” said La Spada. “It isn’t just neurons becoming affected when their support cells dysfunction. The Bergmann glia didn’t express the mutant gene, but they still degenerated. This shows the bilateral relationship between neurons and non-neuronal cells. They’re equal partners, in both normal functioning and in disease.

“The second result underscores the relevance of Purkinje cells and the olivary neuron circuit in the brainstem to SCA7. When it’s dysfunctional, degeneration occurs. This is crucial for our understanding of this disease, and should enable us to develop more specific therapeutic approaches. Although we have our work cut out for us, we now have a better idea of what we’re up against.”

Funding for this research came, in part, from the National Institutes of Health.

Co-authors of the study are Stephanie A. Furrer, Mathini S. Mohanachandran, Sarah M. Waldherr, Christopher Chang and Bryce L. Sopher, of the UCSD Department of Neurology; Vincent A. Damian, UCSD Department of Biochemistry; Gwenn A. Garden, UCSD Department of Neurology and Center on Human Development and Disability, University of Washington.

# # #

Media Contact: Scott LaFee, 619-543-6163, slafee@ucsd.edu

Related Specialties

Neurosciences



Media Contact

Related News

4/22/2015
UC San Diego Health System and Scripps Health are partnering to provide improved continuity of patient care, fellowship training and research in hospice and palliative medicine. Under a new five-year ...
4/20/2015
Researchers at the University of California, San Diego School of Medicine and Moores Cancer Center have discovered a molecular mechanism that connects breast tissue stiffness to tumor metastasis and p ...
4/20/2015
A decrease in the amount of time spent eating and an increase in overnight fasting reduces glucose levels and may reduce the risk of breast cancer among women, report University of California, San Die ...
4/20/2015
The threat of falsified medications, also referred to as counterfeit, fraudulent, and substandard, can be quite real, yet the full scope and prevalence of the problem is poorly understood, say researc ...
4/17/2015
Researchers at the University of California, San Diego School of Medicine have created an in vitro, live-cell artificial vessel that can be used to study both the application and effects of devices us ...
4/16/2015
The increase in use of e-cigarettes has led to heated debates between opponents who question the safety of these devices and proponents who claim the battery-operated products are a useful cessation t ...
4/16/2015
An international team of scientists, led by researchers at University of California, San Diego School of Medicine, have found genetic overlap between Alzheimer’s disease (AD) and two significant cardi ...
4/13/2015
About one quarter of all atrial fibrillation patients at the lowest risk for stroke receive unnecessary blood thinners from cardiology specialists, according to a new study by researchers at Universit ...