Skip Ribbon Commands
Skip to main content
Translate
Translate
menu iconMenu
search iconSearch

Immune System Molecule Promotes Tumor Resistance to Anti-Angiogenic Therapy

 

August 05, 2013  |   

A team of scientists, led by Napoleone Ferrara, MD, has shown for the first time that a signaling protein involved in inflammation also promotes tumor resistance to anti-angiogenic therapy.

The findings by Ferrara – professor of pathology at the University of California, San Diego School of Medicine and senior deputy director for basic science at the UC San Diego Moores Cancer Center – and colleagues at Genentech, a biotechnology firm based in South San Francisco, are published in the August 4 Advance Online Publication of the journal Nature Medicine.

Angiogenesis is a physiological process in which new blood vessels form from existing vessels. It is fundamental to early development and wound healing, but some cancer tumors exploit angiogenesis to promote blood vessel growth and fuel a tumor’s transition from a benign to a malignant state.

In the late 1980s, Ferrara led efforts to identify a key gene (VEGF) involved in angiogenesis and subsequent development of the first drugs to block VEGF-mediated growth in a variety of cancers, among them lung, kidney, brain and colorectal. Researchers discovered, however, that similar to other therapies, VEGF-targeting drugs may lose effectiveness as tumors develop resistance, allowing cancers to recur.

The latest research highlights the role of interleukin-17 or IL-17, one of a family of signaling molecules called cytokines that are involved in the body’s immune response. Ferrara and colleagues discovered that IL-17 signaling in tumor-infiltrating T cells, part of the body’s adaptive immune response, encourages resistance to the VEGF-blockade in mouse models.

“Our work has the potential to have major translational and therapeutic relevance,” said Ferrara.  “By inhibiting the effects of IL-17 with monoclonal antibodies or other blockers, we can potentially improve the clinical efficacy of VEGF-targeting drugs.”

Co-authors include Alicia S. Chung, Xiumin Wu, Guanglei Zhuang, Hai Ngu, Ian Kasman, Jianhuan Zhang, Jean-Michel Vernes, Zhaoshi Jiang, Y. Gloria Meng, Franklin V. Peale and Wenjun Ouyang, all at Genentech, Inc.

# # #

Media Contact: Scott LaFee, 619-543-6163, slafee@ucsd.edu

Related Specialties

Cancer



Media Contact

Related News

4/20/2015
Researchers at the University of California, San Diego School of Medicine and Moores Cancer Center have discovered a molecular mechanism that connects breast tissue stiffness to tumor metastasis and p ...
4/20/2015
A decrease in the amount of time spent eating and an increase in overnight fasting reduces glucose levels and may reduce the risk of breast cancer among women, report University of California, San Die ...
4/9/2015
A family of proteins called G proteins are a recognized component of the communication system the human body uses to sense hormones and other chemicals in the bloodstream and to send messages to cells ...
2/25/2015
Writing in the February 25 online issue of the journal PLOS ONE, researchers at University of California, San Diego School of Medicine, with collaborators from The Scripps Research Institute (TSRI), h ...
2/13/2015
While genomics is the study of all of the genes in a cell or organism, epigenomics is the study of all the genomic add-ons and changes that influence gene expression but aren’t encoded in the DNA sequ ...
1/22/2015
Researchers at University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and the Bridge Institute at the University of Southern California report the first crystal stru ...
1/20/2015
Upending decades-old dogma, a team of scientists at the University of California, San Diego School of Medicine say enzymes long categorized as promoting cancer are, in fact, tumor suppressors and that ...
1/6/2015
A team of scientists and physicians from the University of California, San Diego School of Medicine, with counterparts at University of California, Los Angeles, describe a novel imaging technique that ...