Skip Ribbon Commands
Skip to main content
Translate
Donations
menu iconMenu
search iconSearch

Marine Bacteria Are Natural Source of Chemical Fire Retardants

 

June 30, 2014  |  

Researchers at the University of California, San Diego School of Medicine have discovered a widely distributed group of marine bacteria that produce compounds nearly identical to toxic man-made fire retardants.

Among the chemicals produced by the ocean-dwelling microbes, which have been found in habitats as diverse as sea grasses, marine sediments and corals, is a potent endocrine disruptor that mimics the human body's most active thyroid hormone.

The study is published in the June 29 online issue of Nature Chemical Biology.

Marine pollution graphic

Some marine bacteria produce potent persistent organic compounds that are nearly identical to flame retardant chemicals.

"We find it very surprising and a tad alarming that flame retardant-like chemicals are biologically synthesized by common bacteria in the marine environment," said senior author Bradley Moore, PhD, a professor at the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and Scripps Institution of Oceanography.

The toxic compounds are known as polybrominated diphenyl ethers (PBDEs), a subgroup of brominated flame retardants that are combined into foam, textiles and electronics to raise the temperature at which the products will burn.

Certain formulations of PBDEs are no longer used in automobile and home products in the United States, but testing by the Environmental Protection Agency indicates that most Americans and Canadians carry traces of the chemicals. Indeed, levels exceed those of Europeans and others by a factor of ten or more. Californians, in particular, have higher than average “body burdens” of the compounds.

Although the presence, persistence and ability of PBDEs to accumulate in the fatty tissues of marine animals have long been recognized, researchers had previously believed the compounds were anthropogenic in origin and due to ocean pollution. 

More recent examinations have shown a pervasiveness of PBDEs in prey and predatory species, suggesting a natural microbial source of the compounds as well as an anthropogenic one.

The study is the first to isolate and identify bacteria that synthesize these compounds and whose presence may help explain the observed distribution pattern of PBDEs in the marine food chain.

In the study, the researchers identified a group of ten genes involved in the synthesis of more than 15 bromine-containing polyaromatic compounds, including some PBDEs. They have since conducted DNA sequencing analyses that will allow them to probe the ocean for other biological sources for these chemicals and to begin to assemble a complete picture of their human health risk.

“The next step is to look more broadly in the marine environment for the distribution of this gene signature and to document how these compounds are entering the food chain,” said Vinayak Agarwal, PhD, a postdoctoral researcher with the Scripps Center for Oceans and Human Health at UC San Diego.

Co-authors include Abrahim El Gamal, Kazuya Yamanaka, Roland Kersten, Dennis Poth, Michelle Schorn, and Eric Allen, all at UCSD.

Funding for this study was provided, in part, by the National Science Foundation (grant OCE-1313747) and National Institute of Environmental Health Sciences (grant P01-ES021921) through its Oceans and Human Health program.

# # #

Media contact: Scott LaFee, 619-543-6163, slafee@ucsd.edu




Media Contact

Related News

5/8/2015
Therapies that specifically target mutations in a person’s cancer have been much-heralded in recent years, yet cancer cells often find a way around them. To address this, researchers at University of ...
4/30/2015
Urinary tract infections (UTIs) are common, and widespread antibiotic resistance has led to urgent calls for new ways to combat them. Researchers at University of California, San Diego School of Medic ...
4/29/2015
Researchers at University of California San Diego School of Medicine report pancreatic cancer rates are highest in countries with the least amount of sunlight. Low sunlight levels were due to a combin ...
4/20/2015
The threat of falsified medications, also referred to as counterfeit, fraudulent, and substandard, can be quite real, yet the full scope and prevalence of the problem is poorly understood, say researc ...
4/2/2015
Cells of the intestine, liver and pancreas are difficult to produce from stem cells. Writing in Cell Stem Cell April 2, researchers at University of California, San Diego School of Medicine have disco ...
2/23/2015
Researchers at University of California, San Diego School of Medicine have discovered that the inflammatory molecule LTB4 promotes insulin resistance, a first step in developing type 2 diabetes. What’ ...
2/13/2015
While genomics is the study of all of the genes in a cell or organism, epigenomics is the study of all the genomic add-ons and changes that influence gene expression but aren’t encoded in the DNA sequ ...
1/26/2015
To better understand PLA2 enzymes and help drive therapeutic drug development, researchers at University of California, San Diego School of Medicine developed 3D computer models that show exactly how ...


Share This Article



Follow Us