Skip Ribbon Commands
Skip to main content
Translate
Donations
menu iconMenu
search iconSearch

Aspirin, Take Two

White blood cell research shows how causing and conquering inflammation are inextricably linked

August 18, 2014  |  

Hugely popular non-steroidal anti-inflammation drugs like aspirin, naproxen (marketed as Aleve) and ibuprofen (Advil, Motrin) all work by inhibiting or killing an enzyme called cyclooxygenase – a key catalyst in production of hormone-like lipid compounds called prostaglandins that are linked to a variety of ailments, from headaches and arthritis to menstrual cramps and wound sepsis.

In a new paper, published this week in the online early edition of PNAS, researchers at the University of California, San Diego School of Medicine conclude that aspirin has a second effect: Not only does it kill cyclooxygenase, thus preventing production of the prostaglandins that cause inflammation and pain, it also prompts the enzyme to generate another compound that hastens the end of inflammation, returning the affected cells to homeostatic health.

“Aspirin causes the cyclooxygenase to make a small amount of a related product called 15-HETE,” said senior author Edward A. Dennis, PhD, Distinguished Professor of Pharmacology, Chemistry and Biochemistry. “During infection and inflammation, the 15-HETE can be converted by a second enzyme into lipoxin, which is known to help reverse inflammation and cause its resolution – a good thing.”

macrophage

Scanning electron micrograph of macrophage. Image courtesy of National Cancer Institute.

Specifically, Dennis and colleagues looked at the function of a type of white blood cells called macrophages, a major player in the body’s immune response to injury and infection. They found that macrophages contain the biochemical tools to not just initiate inflammation, a natural part of the immune response, but also to promote recovery from inflammation by releasing 15-HETE and converting it into lipoxin as the inflammation progresses.

Dennis said the findings may open new possibilities for anti-inflammatory therapies by developing new drugs based on analogues of lipoxin and other related molecules that promote resolution of inflammation. “If we can find ways to promote more resolution of inflammation, we can promote health,” he said.  

Co-authors include Paul C. Norris, David Gosselin, Donna Reichart and Christopher K. Glass, all at UC San Diego.

Funding support for this research came, in part, from the National Institutes of Health (grants U54 GM069338 and T32 GM007752).

# # #

Media contact: Scott LaFee, 619-543-6163, slafee@ucsd.edu




Media Contact

Related News

5/8/2015
Therapies that specifically target mutations in a person’s cancer have been much-heralded in recent years, yet cancer cells often find a way around them. To address this, researchers at University of ...
4/30/2015
Urinary tract infections (UTIs) are common, and widespread antibiotic resistance has led to urgent calls for new ways to combat them. Researchers at University of California, San Diego School of Medic ...
2/13/2015
While genomics is the study of all of the genes in a cell or organism, epigenomics is the study of all the genomic add-ons and changes that influence gene expression but aren’t encoded in the DNA sequ ...
1/26/2015
To better understand PLA2 enzymes and help drive therapeutic drug development, researchers at University of California, San Diego School of Medicine developed 3D computer models that show exactly how ...
1/22/2015
Researchers at University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and the Bridge Institute at the University of Southern California report the first crystal stru ...
1/20/2015
Upending decades-old dogma, a team of scientists at the University of California, San Diego School of Medicine say enzymes long categorized as promoting cancer are, in fact, tumor suppressors and that ...
1/15/2015
Researchers at UC San Diego School of Medicine previously reported that a drug used for almost a century to treat trypanosomiasis, or sleeping sickness, reversed environmental autism-like symptoms in ...
1/14/2015
Researchers at the University of California, San Diego School of Medicine, with collaborators in Korea and Scotland, have identified a novel signaling pathway critical to the immune response of cells ...


Share This Article



Follow Us