Prostate Cancer

• Most common malignancy in men with an estimated 218,000 new cases expected in 2013

• Second most common cause of cancer related death in American men with over 32,000 deaths expected in 2013

• Potentially curable when caught in its early stages

<table>
<thead>
<tr>
<th>Site</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sites</td>
<td>1 in 2</td>
</tr>
<tr>
<td>Prostate</td>
<td>1 in 6</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>1 in 13</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>1 in 17</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>1 in 29</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>1 in 48</td>
</tr>
<tr>
<td>Melanoma</td>
<td>1 in 55</td>
</tr>
<tr>
<td>Leukemia</td>
<td>1 in 70</td>
</tr>
<tr>
<td>Oral cavity</td>
<td>1 in 72</td>
</tr>
<tr>
<td>Kidney</td>
<td>1 in 69</td>
</tr>
<tr>
<td>Stomach</td>
<td>1 in 81</td>
</tr>
</tbody>
</table>

Source: DevCan: Probability of Developing or Dying of Cancer Software, Version 5.1

*Age-adjusted to the 2000 US standard population.

Celebrities with Prostate Cancer: Well After Surgery
Celebrities Diagnosed Too Late
Screening for Prostate Cancer

• PSA and DRE are not perfect markers for prostate cancer
• Most men die with rather than from prostate cancer
• Some men suffer side effects from prostate cancer treatment
• So the goal of screening should be to detect prostate cancer that is “risky” or threatening
USPSTF

• Gives prostate cancer screening a D grade
• The definite evidence of harm far outweighs the unproven benefit of PSA screening
• 8,000 comments received concerning the recommendation in the first 30 days (comment period)
• They stick with their recommendation against screening
Recent studies

Screening revisited:

Screening

PLCO:

• Randomization 50-74 yo men from 1993-2001
 • 38,350 men to intervention vs 38,355 to control
 • Screening: Annual PSA (6 yrs) and DRE (4 yrs)
 • Control: NO screening
 • Follow for ≥ 13 years

• Goal: whether or not screening reduces Prostate Cancer Mortality
Screening

PLCO:

• Findings after median 11.5 yrs
 • Prostate Ca diagnosis:
 • Screened-9% vs Control-7.8%
 • Prostate Ca Mortality:
 • Screened-0.24% vs Control-0.21%

Andriole et al, NEJM, 2009
PLCO Contamination

• Flaws:
 • Assumed that 10% with prev screening in control arm would continue
 • In actuality, Control Arm,
 • 44% of men in each arm had ≥1 PSA test before randomization
 • During trial, 52% had undergone PSA screening and 46% with DRE
 • Controls:
 • Only 15% decreased diagnosis
 • 93% of cancers were asymptomatic, organ-confined
 • Follow-up was 11.5 years from randomization, NOT treatment
European Screening Study

ERSPC:

• 162,243 men 55-69 yo randomized from 1991-2003

• Median follow-up - 9 years

• Screening:
 • Did NOT require annual PSA – only 2.1 tests averaged over course of study
 • DRE variable, but usually only if equivocal PSA
ERSPC:

- Prostate Cancer diagnosis: Screened-8.2% vs Control-4.8
- Death from prostate cancer: screened arm RR was 0.80 (95% CI 0.67–0.95; P=0.01)
 - Curves began to diverge at 7-8 years
- NNS to prevent 1 death=1410; NNT=48
Screening - Newer data

Mortality results from the Göteborg randomised population-based prostate-cancer screening trial

Jonas Hugosson, Sigrid Carlsson, Gunnar Aus, Svante Bergdahl, Ali Khatami, Pär Lodding, Carl-Gustaf Pihl, Johan Stranne, Erik Holmberg, Hans Lilja

- 20,000 men aged 50-64 yrs
- Screened every 2 years
- Followed median 14 years
- Screened:
 - Prostate cancer diagnosed: Screened-12.7% vs Control-8.2%
 - Prostate cancer death: Screened-0.5% vs Control-0.9%
 - RR Reduction = 0.56 (95%CI, 0.39-0.82, p=0.002)
 - Compared to ERSPC = 0.8
Screening - Newer data

Lower PSA threshold for biopsy (2.5-3 vs 4) and more frequent screening (2 vs 4 yrs)

- Lower contamination (3% vs 44%)

- **Longer follow-up with improved RR**

- NNS = 293 and NNT = 12 to prevent 1 Death
Screening

Bottom line:

• Educate and discuss with patients
• Screening saves lives
• Particularly for men who are younger and have a higher risk of prostate cancer
• Screening
 • Recommended by AUA
 • ACS has changed based on PLCO and ERSPS – “Talk to your doctor about pros/cons” starting at age 45-50
So how do we answer the screening concerns?

• Improve the specificity of PSA
• Stop screening men who are unlikely to benefit
• Diminish overtreatment by offering active surveillance more than currently
Risk Stratification

- PSA
- Clinical Stage
- Gleason Grade
- Number and extent of positive biopsies
- PSA velocity/ PSA kinetics
- Imaging (Bone scan, CT, MRI)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>Points</th>
<th>N</th>
<th>% of cohort</th>
<th>% fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSA</td>
<td>2.1-6</td>
<td>0</td>
<td>721</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>6.1-10</td>
<td>1</td>
<td>453</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>10.1-20</td>
<td>2</td>
<td>209</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>20.1-30</td>
<td>3</td>
<td>36</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>>30</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>Gleason</td>
<td>1-3/1-3</td>
<td>0</td>
<td>1068</td>
<td>74</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1-3/4-5</td>
<td>1</td>
<td>239</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4-5/1-5</td>
<td>3</td>
<td>132</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>T-stage</td>
<td>T1/T2</td>
<td>0</td>
<td>1410</td>
<td>98</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>T3a</td>
<td>1</td>
<td>29</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>% pos bx</td>
<td><34%</td>
<td>0</td>
<td>911</td>
<td>63</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>>34%</td>
<td>1</td>
<td>528</td>
<td>37</td>
<td>22</td>
</tr>
<tr>
<td>Age</td>
<td><50</td>
<td>0</td>
<td>51</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>>50</td>
<td>1</td>
<td>1388</td>
<td>96</td>
<td>15</td>
</tr>
</tbody>
</table>
Do Nothing?!

- 331 patients with a median follow-up period of 84 months (range 24–132 months)
- 101 patients (31%) came off active surveillance because criteria for intervention were fulfilled,
- 32 patients (10%) received radical treatment although they did not fulfill the criteria for intervention
- The overall survival was 85% and the disease-specific survival was 99%
- Three patients died of prostate cancer
Survival Benefit to Surgery

May 12, 2005 with f/u May 2, 2011

The NEW ENGLAND JOURNAL of MEDICINE

Radical Prostatectomy versus Watchful Waiting in Early Prostate Cancer

Anna Bill-Axelson, M.D., Lars Holmberg, M.D., Ph.D., Mirja Ruutu, M.D., Ph.D., Michael Häggman, M.D., Ph.D., Swen-Olof Andersson, M.D., Ph.D., Stefan Bratell, M.D., Ph.D., Anders Spångberg, M.D., Ph.D., Christer Busch, M.D., Ph.D., Stig Nordling, M.D., Ph.D., Hans Garmo, Ph.D., Juni Palmgren, Ph.D., Hans-Olov Adami, M.D., Ph.D., Bo Johan Norlén, M.D., Ph.D., and Jan-Erik Johansson, M.D., Ph.D., for the Scandinavian Prostate Cancer Group Study No. 4*
Survival Benefit to Surgery

Bill-Axelson, A et al NEJM 2005
DaVinci Robotic System
Advantages to the RALP

- Data suggesting:
 - Lower blood loss
 - Earlier discharge
 - Quicker return to regular routine
 - Lower rate of bladder neck contraction
 - Earlier return of continence

- Equal cancer cure rates
 - Continence and potency data related to surgeon
 - Safety higher in high volume hospitals
Robotic Volume by Year
2012 429,1740 cases overall
Radiation Therapy
Types of Radiation Therapy

- External beam radiation therapy (EBRT)
 - X-rays (aka photons)
 - Conventional
 - 3D-CRT
 - IMRT (Intensity Modulated Radiation Therapy)
 - Electrons (superficial penetration)
 - Particle therapy (e.g. protons, carbon ions)

- Brachytherapy (“short-therapy”)
 - Interstitial
 - Low dose rate (e.g. I-125, Pd-103) - permanent
 - High dose rate (HDR) (e.g. Ir-192) - temporary
IMRT

- 25 Gy
- 45 Gy
- 65 Gy
- 70 Gy
- 76 Gy
- 78 Gy
- 80 Gy
Radiation Therapy

• Advantages
 • Saves lives
 • Avoids surgery
 • Low risk of side effects

• Disadvantages
 • Irritative voiding symptoms (urinary and stools)
 • Bleeding
 • Cancer risk
 • Difficult to salvage
 • Cost
What is new in screening and treatment?

- MRI “fusion biopsies”
- For men with rising PSA and prior negative prostate biopsies
- Allows identification of lesions and directed biopsies for enhanced diagnosis

- Molecular risk stratification

- New therapies for men with advanced and high risk prostate cancer (Sipuleucel T, Abiraterone acetate, Enzalutamide)
Prolaris and AUA Risk

Univariate p-values: AUA<10^{-3}, AUA+Prolaris<10^{-5}

AUA RISK

- HIGH
- INTERMEDIATE
- LOW

AUA RISK %

AUA + PROLARIS RISK %

Data on file Myriad Genetic Laboratories, Inc
Genome Dx

• GenomeDx platform employs high-resolution, whole-genome analysis approach to profile RNA expression signatures.

• Very powerful technique to explore over a million individual RNA molecules from genes and non-coding regions of the human genome.

• Prostate Cancer test near commercialization
Genomic Health

- Maker of Oncotype Dx for breast cancer and for colon cancer.
- They have an mrna expression array test that is undergoing evaluation and validation currently
- Identification of Prostate Cancer-Expressed MicroRNAs Associated with Clinical Recurrence (cR) and Prostate Cancer Specific Survival (PCSS) Following Radical Prostatectomy (RP) presented at GU ASCO
UCSD Genitourinary Malignancies Program

• **Urology**
 – Christopher Kane, MD
 – J. Kellogg Parsons, MD, MHS
 – Ithaar Derweesh, MD
 – A. Karim Kader, MD, PhD
 – Christina Jamieson, PhD

• **Medical Oncology**
 – Fred Millard, MD
 – James Mike Randall, MD

• **Radiation Oncology**
 – Ajay Sandhu, MD, DMRT
 – Arno Mundt, MD
 – John Einck, MD

• **Clinical Staff**
 – Neremiah Castano, NP
 – Teresa Diaz, RN
 – Beth Manderson, RN

• **Research Data Manager**
 – Kerrin Palazzi, MPH

• **Administrative Team**
 – Darlene Vergara
 – Jessica Thompson
 – Shari Farimond
Urology Faculty

Christopher Kane, MD
Robotic Surgery
Urologic Oncology
Prostate Cancer

J. Kellogg Parsons, MD, MHS
Robotic Surgery
Urologic Oncology
Benign Prostatic Hyperplasia

Ithaar Derweesh, MD
Robotic Surgery
Urologic Oncology
Prostate & Kidney Cancer

Christina Jamieson, PhD
Cancer, Cell Biology, Endocrinology, Genomics, Immunology, Molecular Biology, Translational Research

Karim Kader MD, PhD
Robotic Surgery
Urologic Oncology
Bladder Cancer
Urologic Oncology Clinical Excellence

- Great access and communication
- Multidisciplinary care - well integrated
 - Neoadjuvant chemo/ADT for high risk prostate cancer
 - Neoadjuvant TKI for high risk kidney cancer
 - Primary and adjuvant/salvage radiation therapy with fiducial markers and dose escalation
- High quality minimally invasive surgery
- Robotic radical prostatectomy
 - Low complication, high quality outlier UHC
- Robotic radical cystectomy for bladder cancer patients
 - Low blood loss and enhanced safety for elderly patients
- Robotic and Open Partial nephrectomy
 - Very high proportion of nephron sparing surgery vs. radical nephrectomy
- Extensive retroperitoneal lymph node dissection for testes cancer

- High risk advanced kidney cancer surgery (IVC thrombus)
- Innovative clinical trials