Translate
Translate this website into the following languages:



Close Tab
Donations
UC San Diego Health
menu iconMenu
search iconSearch

UCSD Medical/Bioengineering Researchers Show Titanium Debris Sabotage Artificial Joints

 

September 21, 2005  |  

Microscopic titanium particles weaken the bonding of hip, knee, and other joint replacements, according to research published online in Proceedings of the National Academy of Sciences by researchers at the University of California, San Diego (UCSD) School of Medicine and the Jacobs School of Engineering. The team demonstrated that titanium implants are safe in large blocks, but at the microscopic level, wear and tear can generate micrometer-sized particles.

“As replacement joints are becoming increasingly common in aging populations, our results explain how such devices fail and suggest that improvements should be made in artificial joint design,” said the study’s senior author K.L. Paul Sung, Ph.D., UCSD professor of orthopedic surgery and adjunct professor of cellular bioengineering.

The team measured how titanium particles affected the bonding strength of pins implanted in rat thighs. The pins were shown to come out more easily when the titanium particles were present, with the smallest and largest particles causing the greatest weakening. The researchers demonstrated how different-sized titanium particles affected bone-building cells called osteoblasts and bone-destroying cells called osteoclasts. Microscopic studies revealed osteoblasts did not form proper adhesions, with small- and medium-sized titanium particles concentrated inside cells. Increased production of the protein RANKL by osteoblasts recruited and activated osteoclasts at the insertion sites, further weakening the bone. Larger titanium particles also activated metalloproteinases, which chop up the extracellular matrix that holds cells together.

Currently, Sung is leading a team in using nano-technology to improve implant material which has three to five times higher wear resistance and fatigue properties to reduce particle generation from implants.

In addition to Sung, additional authors were first author Moon G. Choi, M.D., UCSD Department of Orthopedic Surgery; and Hae S. Koh, M.D., UCSD Department of Orthopedic Surgery; Daniel Kluess, M.S. and Daniel O'Connor, M.A., UCSD Department of Bioengineering; Anshu Mathur, Ph.D., George Truskey, Ph.D., Department of Biomedical Engineering, Duke University; Janet Rubin, M.D., Department of Medicine, Emory University School of Medicine and Veterans Administration Medical Center, Atlanta; and David X.F. Zhou, Ph.D., UCSD Department of Bioengineering.

The study was supported by a Bristol Meyers/Zimmer Award for Excellence in Orthopaedic Research and the National Institutes of Health.

##

News Media Contact:

Sue Pondrom, 619-543-6163, spondrom@ucsd.edu

UCSD Health Sciences Communications HealthBeat: /news/

 




Media Contact

Share This Article


Related News

9/27/2016
The Howard Hughes Medical Institute (HHMI), the Simons Foundation and the Bill & Melinda Gates Foundation has named Samara Reck-Peterson, PhD, an HHMI-Simons Faculty Scholar. Reck-Peterson, a professo ...
9/27/2016
The underlying cause of male infertility is unknown for 30 percent of cases. In a pair of new studies, researchers at University of California San Diego School of Medicine determined that the reproduc ...
9/26/2016
Removing plaque from clogged arteries is a common procedure that can save and improve lives. This treatment approach was recently made even safer and more effective with a new, high-tech catheter that ...
9/23/2016
A three-part series published in The Lancet and released in conjunction with the United Nations quantifies health gains achieved if cities were designed so that shops, facilities, work and public tran ...



Follow Us

Our bimonthly newsletter delivers healthy lifestyle tips, patient stories and research discovery news. Subscribe: