UC San Diego Scientists Chart Rapid Advances of Fluorescent Tools for Life-Science Research

 

April 12, 2006  |  

Techniques Promise to Illuminate Details of Protein Expression, Activity and Function

An interdisciplinary team of biological imaging experts from the University of California, San Diego has published a review of fluorescent imaging technologies and underscored the importance of those technologies to major advances in the life sciences.

The article—“The Fluorescent Toolbox for Assessing Protein Location and Function”—is the cover story in the April 14 issue of the journal Science.

“Fluorescent imaging is critical to the observation of dynamic processes in living systems,” said lead author Ben Giepmans, PhD, a research scientist in the UC San Diego-based National Center for Microscopy and Imaging Research (NCMIR). “Some of these techniques now also allow researchers to localize the responsible molecular machine in situ by electron microscopy.”

Giepmans’ co-authors on the Science paper include NCMIR director and UC San Diego School of Medicine neurosciences professor Mark Ellisman, PhD, pharmacology project scientist Stephen Adams, PhD, and Roger Tsien, PhD, professor of pharmacology, chemistry and biochemistry. The National Institutes of Health and the Howard Hughes Medical Institute supported work directly related to this review.

Cell genetically encoded with fluorescent protein

Cells in the limelight. Parallel application of new (genetic tagging) and old targeting methods and fluorophores. Live cells were transfected with genetically encoded fluorescent protein fused to tubulin in order to illuminate the cells’ microtubule networks (green) while tetracysteine-actin and ReAsH report on the location of stress fibers (red).  Cells were subsequently preserved and immunolabeled for the Golgi-matrix protein giantin using quantum dots (yellow). DNA was subsequently stained with Hoechst (blue). (Image: NCMIR/ Ben Giepmans)

In their survey, the scientists contrasted the characteristic benefits and limitations of many new classes of fluorescent probes for studying proteins, including quantum dots, fluorescent proteins, and some genetic tags. Color-rich photomicrographs now routinely appear in scientific journals to illustrate dynamic biochemical processes. Those processes range from the expression of a specific gene to the redistribution of protein within a living cell.

Progress in developing new fluorescent probes over the last decade has been dramatic. “Whole new classes of fluorescent dyes, fluorescent proteins, and other hybrid probes are being engineered to illuminate specific biochemical structures and processes within living cells,” said Ellisman. “They also make possible the direct correlated imaging of the underlying molecular complexes at higher resolution by electron microscopy.” 

Fluorescence imaging is rapidly becoming a biochemist’s tool of choice for studying processes within living cells. Its rapid expansion is partially tied to a synergy of developments, including the increasing ease of implementing innovative targeting strategies to key cell metabolites and structures.  Concomitant advances in instrumentation and data analysis are enabling scientists to identify and quantify dynamic biochemical processes of living cells under light and electron microscopes. Fluorescence techniques are being adapted for clinical and biochemical assays like biopsies and high-throughput drug screening, and are just beginning to find wider application in functional assays of living cells and animals.

Media Contact: Skip Cynar, 858-822-0738, scynar@ucsd.edu




Media Contact

Share This Article


Related News

2/22/2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in ...
2/20/2018
UC San Diego Health now offers patients with epilepsy another non-pharmacological way to treat seizures. For the more than one million individuals who live with uncontrolled seizures despite taking me ...
2/13/2018
Researchers at University of California San Diego School of Medicine and Shiley Eye Institute at UC San Diego Health have discovered that a chemical compound that activates ATF6, a gene associated wit ...
2/8/2018
Ever wonder why obese bodies burn less calories or why dieting often leads to a plateau in weight loss? In both cases the body is trying to defend its weight by regulating energy expenditure. In a pap ...



Follow Us