Translate
Translate this website into the following languages:



Close Tab
Donations
UC San Diego Health
menu iconMenu
search iconSearch

New Role Found for a Cardiac Progenitor Population

 

May 15, 2008  |  

In a discovery that could one day lead to an understanding of how to regenerate damaged heart tissue, researchers at the University of California, San Diego have found that parent cells involved in embryonic development of the epicardium – the cell layer surrounding the outside of the heart – give rise to three important types of cells with potential for cardiac repair.

In a study published online May 14 in advance of publication in the journal Nature, researchers led by Sylvia Evans, Ph.D., professor of pharmacology at the Skaggs School of Pharmacy and Pharmaceutical Sciences and professor of medicine at UC San Diego, discovered in mice that developing embryonic cells that form the epicardium develop into cardiomyocytes, or muscle cells, as well as into connective tissue and vascular support cells of the heart. 

The UCSD team generated mice which enabled lineage studies of epicardial cells, utilizing a marker for these lineages called a T-box transcription factor, Tbx18.  “The surprising finding was that during the earliest stages of development, myocytes are also generated from parent cells within the embryonic epicardium,” said Evans.  The Evans lab went on to demonstrate that, in the adult mouse, epicardial cells have lost their earlier embryonic ability to generate cardiomyocytes.

“Our findings raise the possibility that if we can restore the ability of adult epicardial cells in mammals to generate cardiomyocytes, it may enhance their future potential for cardiac repair following injury, such as a heart attack,” said co-first author Jody C. Martin of UCSD’s Department of Bioengineering.

While the adult mammalian heart has lost this capacity to generate new heart muscle, according to Evans, other investigators have demonstrated that zebrafish can fully regenerate their hearts following injury.  This regeneration is associated with migration of Tbx 18-expressing cells to the site of injury, and the new formation of cardiomycytes.  If Tbx18-cell migration is prevented, there is no repair. The UCSD researchers’ findings suggest that one reason that zebrafish can regenerate their hearts may be that adult zebrafish epicardium somehow retains the capacity to generate cardiomyocytes.

Additional contributors to the paper include co-first authors Chen-Leng Cai andYunfu Sun, as well as Li Cui, Lei Bu, Lei Yang and Xiaoxue Zhang, UCSD’s Skaggs School of Pharmacy; Ju Chen, Kunfu Ouyang and Xingqun Liang, UCSD Department of Medicine; Andrew McCulloch, UCSD Department of Bioengineering; Lianchun Wang, University of Georgia; William B. Stallcup, The Burnham Institute, La Jolla, California; and Christopher P. Denton, Royal Free and University College Medical School, London.  The research was funded in part by a grant from the National Institutes of Health and an American Heart Association Scientist Development grant.

# # #

Media Contact: Debra Kain, ddkain@ucsd.edu, 619-543-6163

 




Media Contact

Share This Article


Related News

8/24/2016
While even the best wines eventually peak and turn to vinegar, a new study by researchers at University of California San Diego School of Medicine suggests a paradoxical trend in the mental health of ...
8/19/2016
Researchers at the University of California San Diego School of Medicine have found that a form of magnetic resonance imaging (MRI) that non-invasively measures fat density in the liver corresponds wi ...
8/19/2016
Rheumatoid arthritis patients taking medications that inhibit interleukin-1beta (IL-1beta), a molecule that stimulates the immune system, are 300 times more likely to experience invasive Group A Strep ...
8/18/2016
Concerns over the Zika virus have focused on pregnant women due to mounting evidence that it causes brain abnormalities in developing fetuses. However, new research in mice suggests that certain adult ...



Follow Us

Our bimonthly newsletter delivers healthy lifestyle tips, patient stories and research discovery news. Subscribe: