For more information on our recent data notice, please click here

Menu
Search

Surface Bacteria Maintains Skin’s Healthy Balance

 

November 23, 2009  |  

On the skin’s surface, bacteria are abundant, diverse and constant, but inflammation is undesirable.  Research at the University of California, San Diego School of Medicine now shows that the normal bacteria living on the skin surface trigger a pathway that prevents excessive inflammation after injury.

“These germs are actually good for us,” said Richard L. Gallo, MD, PhD, professor of medicine and pediatrics, chief of UC San Diego’s Division of Dermatology and the Dermatology section of the Veterans Affairs San Diego Healthcare System.

The study, to be published in the advance on-

Gallo and Lai

Richard Gallo, MD, PhD, & Yu Ping Lai

line edition of Nature Medicine on November 22,  was done in mice and in human cell cultures, primarily performed by post-doctoral fellow Yu Ping Lai .

“The exciting implications of Dr. Lai’s work is that it provides a molecular basis to understand the ‘hygiene hypothesis’ and has uncovered elements of the wound repair response that were previously unknown. This may help us devise new therapeutic approaches for inflammatory skin diseases,” said Gallo.

The so-called “hygiene hypothesis,” first introduced in the late 1980s, suggests that a lack of early childhood exposure to infectious agents and microorganisms increases an individuals susceptibility to disease by changing how the immune system reacts to such “bacterial invaders.” The hypothesis was first developed to explain why allergies like hay fever and eczema were less common in children from large families, who were presumably exposed to more infectious agents than others.  It is also used to explain the higher incidence of allergic diseases in industrialized countries.

The skin’s normal microflora – the microscopic and usually harmless bacteria that live on the skin – includes certain staphylococcal bacterial species that will induce an inflammatory response when they are introduced below the skin’s surface, but do not initiate inflammation when present on the epidermis, or outer layer of skin.

In this study, Lai, Gallo and colleagues reveal a previously unknown mechanism by which a product of staphylococci inhibits skin inflammation.  Such inhibition is mediated by a molecule called staphylococcal lipoteichoic acid (LTA) which acts on keratinocytes – the primary cell types found on the epidermis. 

The researchers also found that Toll-like receptor 3 (TLR3) activation is required for normal inflammation after skin injury.

“Keratinocytes require TLR3 to mount a normal inflammatory response to injury, and this response is kept from becoming too aggressive by staphylococcal LTA,” said Gallo. “To our knowledge, these findings show for the first time that the skin epithelium requires TLR3 for normal inflammation after wounding and that the microflora helps to modulate this response.”

Additional contributors to the paper include Yu Ping Lai, Anna Di Nardo, Teruaki Nakatsuji, Anna L Cogen, Chun-Ming Huang and Katherine A. Radek, UCSD Division of Dermatology and the VA San Diego Healthcare System; Anke Leichtle and Allen F. Ryan, UCSD Department of Surgery/Otolaryngology and the VA San Diego Healthcare System; Yan Yang and Zi-Rong Wu, School of Life Science, East China Normal University, Shanghai; Lora V Hooper, Howard Hughes Medical Institute and University of Texas Southwestern Medical Center, Dallas; and Richard R Schmidt and Sonja von Aulock, University of Konstanz, Germany.

The study was funded by grants from the National Institutes of Health, and a US Veterans Administration Merit Award.

# # #

Media Contact: Debra Kain

 


Related Specialties



Media Contact

Share This Article


Related News

3/28/2023
New UC San Diego Health bladder cancer detection procedure uses blue light and imaging dye to make cancer cells glow pink in clinic and operating room settings.
3/27/2023
Researchers at UC San Diego School of Medicine and Moores Cancer Center at UC San Diego Health examined a new treatment approach for endometrial cancer.
3/22/2023
UC San Diego researchers describe why SARS-CoV-2 subvariants spread more rapidly than the original virus strain, and how an early treatment might have made people more susceptible to future infections ...
3/20/2023
UC San Diego Health expanding care to patients with a multidisciplinary clinic in Bankers Hill that will provide specialized care in a centralized location.



Follow Us