Researchers Map Thousands of MAPK Protein Interactions

 

September 20, 2010  |  

Investigators, led by researchers at the University of California, San Diego, have mapped a huge network of protein interactions involving Mitogen Activated Protein Kinase (MAPK) pathways. Their study will be published in the advanced online edition of Nature Methods on September 19.


Trey Ideker, PhD

“MAP kinases play an important role in human disease and as drug targets, so a better understanding of their thousands of interactions will likely identify new targets,” said principal investigator Trey Ideker, PhD, chief of the Division of Genetics at UC San Diego.

Protein kinases transmit chemical signals within the cell to regulate a host of functions, such as cell growth or metabolism.  Certain protein kinases have been implicated in the uncontrolled growth of cells, for example; their prolonged activation can lead to cardiac disease and breast cancer. 

MAPK pathways – a collection of protein signaling cascades stimulated by a wide variety of extra-cellular signals, including growth factors, cytokines and environmental stresses – form the backbone of signal transduction within the mammalian cell.  MAPK pathways regulate a large number of fundamental cellular functions including differentiation, proliferation and cell death through activation of specific transcription factors and other regulatory proteins. 

“Because of their central role in signal transduction, MAPK proteins have been repeatedly implicated in the pathogenesis of cancer and autoimmune diseases, leading to their selection as targets for drug development,” said Ideker.  “It’s very likely that many of the 2,269 interactors we have mapped will also be potential targets for new therapies.”

Their work involved four steps: developing a screen for physical interactions between MAPK proteins and the rest of the proteome; an assessment of network quality and functional assessment of MAPK interactors through siRNA screening; analysis of the MAPK network to identify potential kinases scaffolds, thereby illustrating how the network can be used as a resource to guide the discovery of novel protein functions; and the identification of interaction modules and use of evolutionary conservation to aid in functional interpretation of the network.

Additional contributors to the study include Sourav Bandyopadhyay and Merril Gersten, UCSD Departments of Medicine and Bioengineering and Bioinformatics Program; Chih-yuan Chiang,  and Suhaila White of the Genomics Institute of the Novartis Research Foundation; Jyoti Srivastava and Diane L. Barber, UCSF Department of Cell and Tissue Biology; Russell Bell, Sumit K. Chanda, Cornelia Kurschner, Christopher H. Martin,  and Sudhir Sahasrabudhe, Sanford-Burnham Institute for Medical Research; and Mike Smoot, UCSD Department of Medicine and Bioengineering.

# # #

Media Contact: Debra Kain, 619-543-6163, ddkain@ucsd.edu




Media Contact

Share This Article


Related News

2/20/2018
UC San Diego Health now offers patients with epilepsy another non-pharmacological way to treat seizures. For the more than one million individuals who live with uncontrolled seizures despite taking me ...
2/13/2018
Researchers at University of California San Diego School of Medicine and Shiley Eye Institute at UC San Diego Health have discovered that a chemical compound that activates ATF6, a gene associated wit ...
2/8/2018
Ever wonder why obese bodies burn less calories or why dieting often leads to a plateau in weight loss? In both cases the body is trying to defend its weight by regulating energy expenditure. In a pap ...
2/7/2018
Treating obese mice with catestatin (CST), a peptide naturally occurring in the body, showed significant improvement in glucose and insulin tolerance and reduced body weight, report University of Cali ...



Follow Us