Researchers Create Atlas of Transcription Factor Combinations

 

March 05, 2010  |  

Study provides breakthrough blueprint for studying differentiation and evolution

In a significant leap forward in the understanding of how specific types of tissue are determined to develop in mammals, an international team of scientists has succeeded in mapping the entire network of DNA-binding transcription factors and their  interactions.  This global network, indicating which factors can combine to determine cell fate, will be published in the March 5 issue of the journal Cell.

Transcription factors (TFs) are proteins that bind to specific DNA sequences in order to direct which genes should be turned on or off in a tissue. Tissue specificity – whether embryonic tissue develops into lungs or kidneys or skin, for example – is determined by how and which TFs bind to genes.  Between 2,000 and 3,000 transcription factor proteins are encoded by the human genome, potentially creating more than 4 million potential protein pairings.


Trey Ideker, PhD

It has long been appreciated that different combinations of TFs are active in different tissues.  But given the enormous number of TFs and potential pairings, it has been difficult to precisely identify which combinations are functional, according to principal investigator Trey Ideker, PhD, chief of the Division of Genetics at the University of California, San Diego, School of Medicine.

The integrated approach to systematically map all possible combinations of TFs in mammals has generated large data sets in both humans and mice. The complete network contains 762 human and 877 mouse interactions between TFs, indicating TF pairs that can work in combination.

“The availability of this large combinatorial network of transcription factors will provide scientists with many opportunities to study gene regulation, tissue differentiation and evolution in mammals,” said Ideker, professor in the Department of Medicine and at UCSD’s Jacobs School of Engineering. He added that analysis of the network shows that highly connected TFs are broadly expressed across tissues, and that roughly half of the interactions are conserved between mouse and human.  

The researcher team identified nearly 1,000 different pairs of TF proteins that can be wired together, representing the blueprint of all possible combinations that direct gene expression in mammals.  The work may provide researchers with the clues necessary to one day determine how stem cells can be reprogrammed into a particular organ or tissue type.

The research team comprised 41 scientists from 17 different institutions around the world led by UC San Diego, the RIKEN Institute in Japan, and King Abdullah University of Science and Technology in Saudi Arabia.  Members of UC San Diego were supported by a grant from the National Institute of Mental Health.  Researchers at the RIKEN Omics Science Center were supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology.

# # #

Media contact:  Debra Kain, 619-543-6163, ddkain@ucsd.edu

 




Media Contact

Share This Article


Related News

2/13/2018
Researchers at University of California San Diego School of Medicine and Shiley Eye Institute at UC San Diego Health have discovered that a chemical compound that activates ATF6, a gene associated wit ...
2/8/2018
Ever wonder why obese bodies burn less calories or why dieting often leads to a plateau in weight loss? In both cases the body is trying to defend its weight by regulating energy expenditure. In a pap ...
2/7/2018
Treating obese mice with catestatin (CST), a peptide naturally occurring in the body, showed significant improvement in glucose and insulin tolerance and reduced body weight, report University of Cali ...
2/6/2018
Researchers at University of California San Diego School of Medicine found a significant number of children across four regions in the United States were determined to have fetal alcohol spectrum diso ...



Follow Us