Translate
Translate this website into the following languages:



Close Tab
Donations
UC San Diego Health
menu iconMenu
search iconSearch

Key Culprit Identified in Breast Cancer Metastasis

 

February 16, 2011  |  

When doctors discover high concentrations of regulatory T cells in the tumors of breast cancer patients, the prognosis is often grim, though why exactly has long been unclear.

Now new research at the University of California, San Diego School of Medicine suggests these regulatory T cells, whose job is to help mediate the body’s immune response, produce a protein that appears to hasten and intensify the spread of breast cancer to distant organs and, in doing so, dramatically increase the risk of death.

The findings are reported in the Feb. 16 advance online edition of the journal Nature.

The researchers found that mice with breast cancer were more likely to develop metastatic lung cancer due to elevated levels of RANKL, an inflammatory protein normally involved in bone remodeling. Regulatory T cells were found to be the primary source of RANKL in these tumors. However, the same increase in metastasis was seen when synthetic RANKL was injected directly into tumors, suggesting that RANKL was the key to the ability of regulatory T cells to promote the spread of breast cancer. The scientists also determined that interfering with the ability of RANKL to interact with cancer cells seemed to block tumor progression, and may represent a potential target for drug therapy.

 

Michael Karin

Michael Karin, PhD

“What is exciting about this study is that now that we understand an increase in RANKL translates to an increase in metastasis, we can get to work on figuring out ways to stop or slow the production of RANKL in breast cancer patients,” said Michael Karin, PhD, Distinguished Professor of Pharmacology and Pathology at UCSD's Laboratory of Gene Regulation and Signal Transduction and Moores Cancer Center.

 

RANKL is a well-known factor in a variety of degenerative bone diseases, including rheumatoid arthritis and bone metastasis. In June 2010, the Food and Drug Administration approved the first RANKL-inhibiting drug for use in postmenopausal women at risk for osteoporosis.

“When we were able to control the RANKL production in the mice, we were able to slow or stop the spread of the cancer,” Karin said. “The next logical step is to turn to drugs that block RANKL production to see how they might affect the spread of breast cancer.”

Other breast cancer studies have linked RANKL to early stages in the development of synthetic progestin-driven breast tumors. According to the Women’s Health Initiative and the Million Women Study, hormone replacement therapy and contraceptives with progestin significantly increase the risk of developing breast cancer. The findings from these studies and the new UCSD research suggest that drugs that block RANKL may be effective in preventing both the early stages of breast cancer and the advanced progression of the disease.

Collaborators on the study are first authors Wei Tan and Weizhou Zhang, Amy Strasner and Sergei Grivennikov, UCSD Laboratory of Gene Regulation and Signal Transduction; Jin Q. Cheng, Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Fla.; and Robert M. Hoffman, AntiCancer Inc, San Diego.

The research was supported by the National Institutes of Health, Susan G. Komen Breast Cancer Foundation and Crohn’s and Colitis Foundation of America.

# # #

Media Contact: Scott LaFee, 619-543-6163, slafee@ucsd.edu


Related Specialties



Media Contact

Share This Article


Related News

12/8/2016
A meta-analysis of genome-wide association studies (GWAS) has identified six loci or regions of the human genome that are significantly linked to personality traits, report researchers at University o ...
12/7/2016
Researchers at the Skaggs School of Pharmacy and Pharmaceutical Sciences at University of California San Diego have now determined the 3D structure of CCR2 simultaneously bound to two inhibitors. Unde ...
12/6/2016
Patients at the newly opened Jacobs Medical Center at UC San Diego Health can be in command of their own experience by controlling room temperature, lighting, accessing their personal medical informat ...
12/1/2016
Previous studies identified the Hippo pathway kinases LATS1/2 as a tumor suppressor, but new research led by University of California San Diego School of Medicine scientists reveals a surprising role ...



Follow Us

Our bimonthly newsletter delivers healthy lifestyle tips, patient stories and research discovery news. Subscribe: