Compounds in Desert Creosote Bush Could Treat Giardia and “Brain-eating” Amoeba Infections

 

August 15, 2017  |  

​Researchers at Skaggs School of Pharmacy and Pharmaceutical Sciences at University of California San Diego and the University of Colorado Anschutz Medical Campus have found that compounds produced by the creosote bush, a desert plant common to the Southwestern United States, exhibit potent anti-parasitic activity against the protozoa responsible for giardia infections and an amoeba that causes an often-lethal form of encephalitis.

The findings, published online August 9 in PLOS Neglected Tropical Diseases, offer a starting point for widening the arsenal of antimicrobial agents, effective against deadly parasitic infections, scientists said.

creosote bush

Flowers on a blooming creosote bush, found to produce anti-parasitic compounds. Image courtesy of Wikipedia.

The World Health Organization estimates giardiasis, a diarrheal illness, is linked to approximately 846,000 deaths around the world each year. Infection usually occurs through ingestion of contaminated water or food. Though rarely lethal in the U.S., it’s estimated there are more than 1 million cases of giardiasis in the country annually. Standard treatment usually involves antibiotics and anti-parasitic drugs.

“The significance and intrigue of our study is that it shows the value of prospecting for new medicines from plants traditionally used by indigenous people as medicine,” said co-principal investigator Anjan Debnath, PhD, an assistant adjunct professor at Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego.

The creosote bush (Larrea tridentata), also known as greasewood, or gobernadora in Spanish, is a tough evergreen bush with small waxy leaves, yellow flowers and a distinctive turpentine-like scent. Native Americans in both the U.S. and Mexico have long used the plant for a variety of ailments, including intestinal complaints. There is also an existing body of scientific work documenting the plant’s pharmacologically active compounds, notably nordihydroguaiaretic acid (NDGA). NDGA has antiviral, antibacterial, anti-inflammatory and anticancer properties, and is a liver toxin at high doses.

The study is the first to show that NDGA and five other compounds (four lignans and one flavonoid) are active against the pathogenic protozoa Giardia lamblia and Naegleria fowleri.

G. lamblia causes giardiasis. N. fowleri is a water-borne amoeba that enters the brain through the nasal passage, causing a type of brain damage known as primary amoebic meningoencephalitis (PAM). Though relatively rare, PAM has a greater than 95 percent fatality rate.

In addition to documenting the compounds’ anti-parasitic activity, the research team investigated the mechanisms by which the compounds work. Two compounds were of particular interest because of their 1.5 times greater potency against N. fowleri than the current first-line therapy miltefosine, a broad-spectrum antimicrobial.

“We think the compounds inhibit cysteine protease (an enzyme) that helps the amoeba invade host tissue,” Debnath said. “Our next step is to test the activity of potent compounds in animal models of infection and also explore the possibility of combining these compounds with the currently used drug to see if their activity is further enhanced against Naegleria infection.”

Study co-authors include Bharat Bashyal, Linfeng Li, and Daniel V. LaBarbera, University of Colorado, Aurora; and Trpta Bains, UC San Diego.

This research was funded, in part, by a grant from the ALSAM foundation and National Institutes of Health (KL2TR001444).


​Care at UC San Diego Health

Infectious Disease



Media Contact

Scott LaFee
858-249-0456
slafee@ucsd.edu

Share This Article


Related News

7/5/2017
After 12 weeks of taking an anti-asthma drug, a subset of patients with type 2 diabetes showed a clinically significant reduction in blood glucose during a randomized, double blind, placebo-controlled ...
2/17/2017
An international research team, led by principal investigator Elizabeth A. Winzeler, PhD, professor in the pediatric division of host-microbe systems and therapeutics at University of California San D ...
10/24/2016
Viruses hijack the molecular machinery in human cells to survive and replicate, often damaging those host cells in the process. Researchers at the University of California San Diego School of Medicine ...
5/13/2016
On May 13, the White House Office of Science and Technology Policy (OSTP) announced a new National Microbiome Initiative, a coordinated effort to better understand microbiomes and to develop tools to ...



Follow Us